Abstract

Increasing efforts have been devoted to enhancing the cathode activity towards oxygen reduction and improve power generation of air breathing microbial fuel cells. Exploring non-precious metal and highly active cathodic catalyst plays a key role in improving cathode performance. Our work aims to investigate the electrocatalyst behavior and power output of the single-chamber MFC equipped with carbon nanotubes hybridized molybdenum disulfide nanocomposites (CNT/MoS2) cathode. MoS2 nanosheets embedded into the CNTs network structure is synthesized by a facile hydrothermal method. The CNT/MoS2-MFC achieves a maximum power density of 53.0 mW m−2, which is much higher than those MFCs with pure CNTs (21.4 mW m−2) or solely MoS2 (14.4 mW m−2) cathode. The oxygen reduction reaction (ORR) test also demonstrates a promoted electrocatalytic activity of synthesized material, which may be attributed to the special interlaced structure and abundant oxygen chemisorption sites of CNT/MoS2. Such CNTs-based noble-metal-free catalyst presents a new approach to the application of MFCs cathode materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call