Abstract

ABSTRACTA sequencing batch biofilm reactor under intermittent micro-aerobic or anaerobic conditions was investigated to remove pyridine at various concentrations from synthetic wastewater. The results showed that over 98% of pyridine (influent concentration ≤200 mg L−1) was degraded under intermittent micro-aerobic condition, while about 21% of pyridine was removed under anaerobic condition. Additionally, at least 60% of nitrogen located in the pyridine ring was transformed to ammonium. At the same time, the sulphate reduction was obviously inhibited under intermittent micro-aerobic conditions. The microscopic observation showed that abundant microorganisms were attached on the surface or inside of porous biocarriers under intermittent micro-aerobic conditions after a short-term period of operation. High-throughput sequencing analysis demonstrated that Azotobacter, Rhodobacteraceae and Tolumonas were the dominant species in the intermittent micro-aerobic system. The kinetic study at steady period showed that pyridine degradation was fitted well with the pseudo-first-order model (R2 > 0.96). The two possible intermediate products were identified and the possible biodegradation pathway of pyridine was proposed under micro-aerobic condition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.