Abstract

Chlorpyrifos is an important organophosphorus insecticide. It is highly toxic to mammals and can pollute the environment. Cupriavidus nantongensis X1T can efficiently degrade chlorpyrifos. Immobilization technology can also improve the viability, stability and catalytic ability of bacteria. In this study, strain X1T was, therefore, captured on various composite immobilized carriers, sodium alginate (SA), diatomite (KLG), chitosan (CTS) and polyvinyl alcohol (PVA). The four types of immobilized beads (SA, SA + KLG, SA + CTS and SA + PVA) could form a slice and honeycomb structure to capture strain X1T. The results showed that SA + CTS (SC) was an optimal material combination for the immobilization of strain X1T to degrade chlorpyrifos. Compared with SA-X1T, after adding CTS, the specific surface area and adsorption capacity for chlorpyrifos were increased 3.4 and 1.7 fold, respectively. SC-X1T could degrade 96.6% of chlorpyrifos at 20 mg/L within 24 h and the degradation rate constant was 4.8 fold greater than immobilized strain LLBD2, a well-studied chlorpyrifos-degrading strain. The immobilized beads SC-X1T also showed a more stable and greater degradation ability than X1T free cells for chlorpyrifos in industrial wastewater. The synergy of adsorption and degradation of immobilized strain X1T is suitable for in-situ remediation of chlorpyrifos contaminated environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.