Abstract

Microbial removal of Chlortetracycline (CTC) at low CTC concentrations (in the order of 10–20 mg/L) has been reported. In this study, a novel microalgae-bacteria consortium was developed for effective CTC biodegradation at higher concentrations (up to 80 mg/L). The microalgae-bacteria consortium is resistant to up to 80 mg/L CTC, while the pure microalgal culture could only tolerate 60 mg/L CTC. CTC removal in the initial 12 h was primarily via biosorption by the microalgae-bacteria consortium and the adsorption capacity increased from 61.71 to 102.53 mg/g biomass in 12 h. Further, CTC biodegradation by the microalgae-bacteria consortium was catalyzed by extracellular enzymes secreted under antibiotic stress. The symbiotic bacterial diversity was analyzed by high throughput sequencing. The aerobic bacteria Porphyrobacter and Devosia were the dominant genera in the consortium. In the presence of CTC, a microbial community shift occurred with Chloroptast, Spingopyxis, and Brevundimonas being the dominant genera.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call