Abstract

The paper industry is one of the most important basic raw material pillar industries. With the decrease of forest wood resources, the recycling of wastepaper has drawn increasingly attention. However, the stickies generated in the process of wastepaper recycling will flocculate and deposite in the pulp, resulting in production accidents and inferior product quality. The biological enzymatic method, with the advantages of high efficiency, specificity, and pollution-free, can prevent the flocculation of the stickies by enzymatically hydrolyzing the ester bond of the stickies components. Previous studies have demonstrated that cutinase (EC 3.1.1.74) had the ability to degrade polyester components of stickies. Meanwhile, relevant studies have shown that anchor peptides possessed the ability to bind polyester. Herein, the cutinase from Humicola insolens (HiC) was fused with Escherichia coli anchor peptide OMP25, the enzymatic properties of the fusion protein HiC-OMP25 and its degradation efficiency of the stickies model substrate, poly(ethyl acrylate) (PEA) and poly(vinyl acetate) (PVAc), as well as stickies sediment were determined. All of the results demonstrated that OMP25 efficiently enhanced the degradation ability of HiC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call