Abstract

Concanavalin A (Con A) binding to the surfaces of mannose-functionalized binary monolayers was enhanced by surface molecular imprinting technique. The protein surface imprinting was prepared from binary Langmuir monolayers at the air-water interface through lateral reorganization of glycolipids directed by Con A in the subphase solution to form more specific bivalent binding sites, followed by horizontal immobilization of the binary monolayers and preservation of the enhanced affinity. The favorable spatial arrangement of the mannose ligands through lateral delivery matched well with protein binding pockets, and the steric crowding/hindrance of neighboring ligands was minimized. The amounts of specifically bound proteins on the imprint surfaces are almost independent of surface density of the ligands, in contrast to the dependence of the bound amounts on surface density of the ligands for the control surfaces. The benefits of the protein surface imprinting included excellent mass transfer, ease of integration into sensor systems, directed creation of imprint sites, and biologically friendly aqueous media. This strategy generated tailor-made surfaces with high protein affinity and opens the possibility of surface design of intellectual materials and preparation of biosensors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.