Abstract

We consider the bimolecular charge carrier recombination in amorphous organic semiconductors having a special kind of energetic disorder where energy levels for electrons and holes at a given transport site move in the same direction with the variation of some disorder governing parameter (the parallel disorder). This particular kind of disorder could be found in materials where the dominant part of the energetic disorder is provided by the conformational disorder. Contrary to the recently studied case of electrostatic disorder, the conformational disorder, if spatially correlated, leads to the increase of the recombination rate constant which becomes greater than the corresponding Langevin rate constant. Probably, organic semiconductors with the dominating conformational disorder represent the first class of amorphous organic semiconductors where the recombination rate constant could overcome the Langevin limit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.