Abstract
We show that a continuously nonuniform coupled-line C-section phaser, as the limiting case of the step-discontinuous coupled-line multisection commensurate and non-commensurate phasers, provides enhanced bandwidth and diversity in real-time analog signal processing (R-ASP). The phenomenology of the component is explained in comparison with the step-discontinuous using multiple-reflection theory and a simple synthesis procedure is provided. The bandwidth enhancement results from the suppression of spurious group delay harmonics or quasi-harmonics, while the diversity enhancement results from the greater level of freedom provided by the continuous nature of the nonuniform profile of the phaser. These statements are supported by theoretical and experimental results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.