Abstract
Traditional rotating drums are a popular type of tumbling mixer; however, they generally suffer from poor axial mixing with granular materials. To overcome this weakness, a system of alternately arranged baffles is presented, and its effect on particle mixing is numerically assessed using a GPU-based discrete element method. It is found that this arrangement of baffles displays better axial mixing performance than drums with (or without) traditional baffles, and that maximum mixing efficiency can be obtained through a suitable choice of baffle dimension and number. Essentially, this novel arrangement promotes the bulk movement of particles in the axial direction because of the combined radial scattering and axial guiding effects of the baffles. Together with the enhanced dispersive mixing, axial convective mixing serves to increase the axial mixing efficiency. Moreover, it is found that alternately arranged baffles produce good performance in various granular systems of rotating drums. Thus, the proposed system is a promising approach for industrial applications in more complicated mixers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.