Abstract

This study investigated the technical feasibility of using electrogermination to activate dormant cysts as an inoculum for subsequent 14-d photosynthetic astaxanthin production in Haematococcus lacustris. Electrotreatment affected the cell viability, surface charge, and morphology of H. lacustris cysts. At an optimal voltage of 2 V for 60 min, the cyst germination rate peaked at 44.6 % after 1 d, representing a 2.2-fold increase compared with that of the untreated control. Notably, electrogermination significantly enhanced both the astaxanthin content (44.9 mg/g cell) and productivity (13.2 mg/L/d) after 14 d of photobioreactor cultivation, corresponding to 1.7- and 1.5-fold increases compared with those in control, respectively. However, excessive electrotreatment, particularly at voltages exceeding 2 V or for durations beyond 60 min, did not enhance the astaxanthin production capability of H. lacustris. Proper optimization of renewable electrogermination can enable sustainable algal biorefinery to produce multiple bioactive products without compromising cell viability and astaxanthin productivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.