Abstract

The use of livers with significant steatosis is associated with worse transplantation outcomes. Brain death donor liver acceptance is mostly based on subjective surgeon assessment of liver appearance, since steatotic livers acquire a yellowish tone. The aim of this study was to develop a rapid, robust, accurate, and cost-effective method to assess liver steatosis. From June 1, 2018, to November 30, 2023, photographs and tru-cut needle biopsies were taken from adult brain death donor livers at a single university hospital for the study. All the liver photographs were taken by smartphones then color calibrated, segmented, and divided into patches. Color and texture features were then extracted and used as input, and the machine learning method was applied. This is a collaborative project between Vall d'Hebron University Hospital and Barcelona MedTech, Pompeu Fabra University, and is referred to as LiverColor. A total of 192 livers (362 photographs and 7240 patches) were included. When setting a macrosteatosis threshold of 30%, the best results were obtained using the random forest classifier, achieving an AUROC = 0.74, with 85% accuracy. Machine learning coupled with liver texture and color analysis of photographs taken with smartphones provides excellent accuracy for determining liver steatosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.