Abstract

This study investigates the application of dielectric composite nanostructures (DCNs) to enhance both antireflection and absorption properties in thin film GaAs solar cells, which are crucial for reducing production costs and improving energy conversion efficiency in photovoltaic devices. Building upon previous experimental validations, this work systematically explores the underlying theoretical mechanisms using the finite difference time domain (FDTD) method to analyze the light interaction with the proposed DCNs. The results show that the combination of Mie resonance, Fabry–Perot resonance, and guided resonance, induced by the surface structuring of the DCNs, significantly enhances light absorption in the active layer, particularly at longer wavelengths. For solar cells featuring a 500-nm-thick absorber layer, SARL-decorated solar cells demonstrated an average reflectivity of 12.18%, whereas those incorporating DCNs exhibited a significantly reduced average reflectivity of 4.52%. These findings indicate that DCNs structures are highly effective in enhancing the performance of thin and ultra-thin GaAs solar cells by minimizing surface reflection and increasing photon utilization, offering a promising solution for high efficiency, cost effective photovoltaic devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.