Abstract

α-Lipoic acid has excellent antioxidant activity, but its poor lipid solubility greatly limits its practical application. This study was undertaken (i) to develop a novel and efficient enzymatic synthesis of lipophilic lipoic acid esters using Candida sp. 99-125 lipase as a catalyst; and (ii) to systematically evaluate their antioxidant potential against bulk oil, oil-in-water emulsion (O/W) and cooked ground meat. Lipophilic lipoic acid esters were successfully and efficiently synthesized using phytosterols as acyl receptor in the presence of Candida sp. 99-125 lipase. The product was identified as phytosterol lipoate by mass spectrometry, Fourier transform infrared spectroscopy and nuclear magnetic resonance. The maximum conversion of phytosterol lipoate surpassed 90% within 12 h and its final yield exceeded 81%. Interestingly, the oil solubility of lipoic acid was increased at least 25-fold and other physicochemical properties were significantly improved. Most importantly, phytosterol lipoate exhibited higher antioxidant activity than lipoic acid in bulk oil, O/W emulsions and cooked ground meat. The antioxidant capacity of lipoic acid can be significantly enhanced by esterification with phytosterols. Therefore, phytosterol lipoate could be further developed as a new antioxidant for use in oil- and fat-based foods. © 2022 Society of Chemical Industry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.