Abstract
In the past few decades, the successful theranostic application of nanomaterials in drug delivery systems has significantly improved the antineoplastic potency of conventional anticancer therapy. Several mechanistic advantages of nanomaterials, such as enhanced permeability, retention, and low toxicity, as well as surface engineering with targeting moieties, can be used as a tool in enhancing the therapeutic efficacy of current approaches. Inorganic calcium phosphate nanoparticles have the potential to increase the therapeutic potential of antiproliferative drugs due to their excellent loading efficiency, biodegradable nature and controlled-release behaviour. Herein, we report a novel system of 5-fluorouracil (5-FU)-loaded calcium phosphate nanoparticles (CaP@5-FU NPs) synthesized via a reverse micelle method. The formation of monodispersed, spherical, crystalline nanoparticles with an approximate diameter of 160–180 nm was confirmed by different methods. The physicochemical characterization of the synthesized CaP@5-FU NPs was done with transmission electron microscopy (TEM), dynamic light scattering (DLS), field emission scanning electron microscopy (FE-SEM), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). The antineoplastic potential of the CaP@5-FU NPs against colorectal and lung cancer cells was reported. The CaP@5-FU NPs were found to inhibit half the population (IC50) of lung adenocarcinoma (A549) cells at 32 μg/mL and colorectal (HCT-15) cancer cells at 48.5 μg/mL treatment. The apoptotic induction of CaP@5-FU NPs was confirmed with acridine orange/ethidium bromide (AO/EB) staining and by examining the morphological changes with Hoechst and rhodamine B staining in a time-dependent manner. The apparent membrane bleb formation was observed in FE-SEM micrographs. The up-regulated proapoptotic and down-regulated antiapoptotic gene expressions were further confirmed with semiquantitative reverse transcriptase polymerase chain reaction (PCR). The increased intracellular reactive oxygen species (ROS) were quantified via flow cytometry upon CaP@5-FU NP treatment. Likewise, the cell cycle analysis was performed to confirm the enhanced apoptotic induction. Our study concludes that the calcium phosphate nanocarriers system, i.e. CaP@5-FU NPs, has higher antineoplastic potential as compared to 5-FU alone and can be used as an improved alternative to the antimitotic drug, which causes severe side effects when administrated alone.
Highlights
Malignant neoplasms are reported as the second most common cause of mortality around the globe next to cardiovascular disorders
The water molecules restricted inside hydrophilic core resulted in swollen micelles that were uniformly dispersed in oil, forming a water-in-oil (W/O) microemulsion system [24]
Dispersible, 5-FU-encapsulated calcium phosphate nanoparticles were prepared by a reverse micelle microemulsion method
Summary
Malignant neoplasms are reported as the second most common cause of mortality around the globe next to cardiovascular disorders. We report the synthesis of calcium phosphate nanoparticles loaded with 5-FU (CaP@5-FU NPs) with the goal of demonstrating enhanced efficacy in lung and colorectal cancer treatment in cell lines. We observed 22.9% of the cells were inhibited at a higher concentration (100 μg/mL) of CaP NPs in HCT-15 cell lines (Figure 4C).
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.