Abstract

Malaria is one of the deadliest infectious diseases threatening half of the world population. With the deterioration of the parasiticidal effect of the current antimalarials, novel approaches such as screening of more specific inhibitors and targeted delivery of drugs have been under intensive research. Herein, we prepare hollow mesoporous ferrite nanoparticles (HMFNs) of 200 nm with ferromagnetic properties using a one-pot hydrothermal reaction. A magnetically targeted drug-delivery system coloaded with artemisinin in the inner magnetite shell and heparin on the outer mesoporous shell (HMFN@ART@HEP) is developed. Specific targeting of the magnetic nanoparticles to the parasite-infected erythrocytes is achieved by the attraction between the HMFNs and hemozoin (paramagnetic), a vital metabolite of plasmodium in the erythrocytic stage. With the hemozoin production reaching the maximum during the schizont period of the parasite, HMFN@ART@HEPs are adsorbed to the infected red blood cells (iRBCs), which not only interferes with the release of merozoites but also significantly enhances the inhibitory efficacy due to the increased local concentration of artemisinin. Subsequently, the heparin coated on the surface of the nanoparticles can efficiently interfere with the invasion of freshly released merozoites to new RBCs through the specific interaction between the parasite-derived ligands and heparin, which further increases the inhibitory effect on malaria. As a cluster of heparin, heparin-coated nanoparticles provide stronger blocking capability than free heparin, resulting from multivalent interactions with surface receptors on merozoite. Thus, we have developed a HMFN-based delivery system with considerable antimalarial efficacy, which is a promising platform for treatment against malaria.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.