Abstract

SnO2 coatings were supplied on the surface of 304 stainless steel (304SS) by a sol-gel process followed by hydrothermal treatments at different reaction temperature and time, respectively. The effects of hydrothermal temperature and time in pure water on the anticorrosion performances of the SnO2 films in simulated proton exchange membrane fuel cells (PEMFC) environments were investigated by potentiodynamic polarization curves, open circuit potential-time curves and electrochemical impedance spectroscopy (EIS). It was found that the SnO2 coated 304SS via the hydrothermal treatment showed a better corrosion resistance than the sample without hydrothermal treatment and bare 304SS. The SnO2 coated 304SS hydrothermally treated at 160°C for 3h showed the highest corrosion resistance among the samples. The results have been discussed in terms of surface structure of SnO2 film and its anticorrosion performance in simulated PEMFC environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call