Abstract

The intricate relationship between Forkhead box O1 (FOXO1), a well-established tumor suppressor, and breast cancer (BC) remains partially elucidated. This study aims to investigate the mechanistic role of FOXO1 nuclear localization in the context of BC. In vitro experiments employed BC cell lines MCF-7 and MDA-MB-175 treated with LOM612, a small molecule activator of FOXO nuclear-cytoplasmic shuttling, and selinexor, an exportin 1 inhibitor. Nuclear accumulation of FOXO1, its interaction with β-catenin, and expressions of key proteins like V-Myc avian myelocytomatosis viral oncogene homolog (c-Myc), cyclin D1 and apoptosis markers were assessed. In vivo, the effects of LOM612 and selinexor were studied using MCF-7 cell-derived xenografts (CDX). Treatment with LOM612 exhibited a significant enhancement in nuclear accumulation of FOXO1 within BC cells. This effect coincided with suppressed migratory behavior and heightened apoptosis susceptibility in these cells. Mechanistically, LOM612 orchestrated FOXO1 to compete with transcription factors (TCF) for binding to β-catenin in the nucleus, leading to reduced c-Myc and cyclin D1 expressions, along with elevated levels of apoptosis-related proteins. Similar trends were observed in CDX models, where LOM612 effectively suppressed tumor growth, increased FOXO1 nuclear localization, and downregulated c-Myc and cyclin D1 expressions. Importantly, selinexor synergistically reinforced the therapeutic effects of LOM612 both in vitro and in vivo. Collectively, this study underscores the potential of combining LOM612 and selinexor as an efficacious anti-BC strategy. The underlying mechanism involves FOXO1's nuclear translocation, which disrupts TCF-β-catenin interactions, thus indirectly inhibiting the Wnt/β-catenin signaling pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call