Abstract
Camptothecin (CPT) is a potent chemotherapeutic agent that shows a broad spectrum of anticancer activities. However, it is clinically inactive because of poor aqueous solubility, rapid aqueous hydrolysis, and unexpected side effects. Three strategies have extensively been adopted to improve its dissolution rate including reduction of drug particle size to a nanoscale, use of an amorphous state, and the formation of inclusion compounds. In our study, we combined these three strategies together by constructing CPT nanoparticles by creating an inclusion complex with β-cyclodextrin (BCD). This new CPT formulation showed a rod-like structure of nanoscaled size and with semiamorphous or amorphous CPT. These BCD-CPT nanoparticles showed improved dissolution rate, stability, dispersion, and cellular uptake. When tested on cancer cells, BCD-CPT nanoparticles showed a much higher anticancer activity (IC50=14-28 μmol/l) in comparison with free CPT (IC50>500 μmol/l) and CPT nanocrystals (IC50>200 μmol/l). In addition, BCD-CPT nanoparticles can be physically mixed with CPT nanocrystals, leading to CPT formulations with tailored drug-release profiles to achieve customized therapeutics and flexible treatments in clinics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.