Abstract

The current study was designed to evaluate potential enhancement of the anticancer activity of imatinib mesylate (IM) with dipyridamole (DIP) and to investigate the underlying mechanisms of the combined therapy (IM/DIP) to reduce hepatotoxicity of IM in solid Ehrlich carcinoma (SEC)-bearing mice. SEC was induced in female albino mice as a model for experimentally induced breast cancer. Mice were randomly divided into seven groups (n = 10): SEC vehicle, IM50 (50mg/kg), IM100 (100mg/kg), DIP (35mg/kg), a combination of IM50/DIP and IM100/DIP. On day 28th, mice were sacrificed and blood samples were collected for hematological studies. Biochemical determination of liver markers was evaluated. Glutamic oxaloacetic transaminase (SGOT), glutamic pyruvic transaminase (SGPT) and alkaline phosphatase (ALP) levels were assessed. In addition, MDR-1 gene expression and immunohistochemical staining of BAX and BCL-2 was done. Also, in vitro experiment for determination of IC50 of different treatments and combination index (CI) were assessed in both MCF-7 and HCT-116 cell lines. IM- and/or DIP-treated groups showed a significant reduction in tumor volume, weight, and serum levels of SGOT, SGPT, and AIP compared to vehicle group. In addition, reduction of VEGF, Ki67, and adenosine contents was also reported by treated groups. Also, IM/DIP combination showed lower IC50 than monotherapy. Combination index is less than 1 for IM/DIP combination in both cell lines. DIP as an adjuvant therapy potentiated the cytotoxic effect of IM, ameliorated its hepatic toxicity, and showed synergistic effect with IM in vitro cell lines. Furthermore, the resistance against IM therapy may be overcome by the use of DIP independent on mdr-1 gene expression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call