Abstract

The present study reports the fabrication of silver substituted hydroxyapatite/functionalized multiwall carbon nanotube (Ag-HA/f-MWCNT) on 316L stainless steel (SS) implant by spray pyrolysis technique. XRD results show an enhanced crystallinity and crystallite sizes with increasing concentration of silver in HA/f-MWCNT. The vibrational spectral analysis revealed the presence of P-O stretching vibration of phosphate group (PO43-) in all the samples. The morphology of Ag substituted HA/f-MWCNT coatings revealed regular rod-like particles arranged in the form of sheet exhibiting slight variation in the size of the particle with increasing the Ag concentration. All the samples indicate the presence of calcium, phosphor, carbon, silver and oxygen constituents in the coating surface. The minimum inhibitory concentration of the nanocomposite decreased from 0.25 mg to 0.125 mg with the increase of Ag concentration, and AO/EB results confirmed the mode of cell distraction. The 1 and 3 wt% Ag-HA/f-MWCNT nanocomposite revealed less toxic effect to the normal human osteoblast cells. The corrosion efficiencies of the fabricated films in the stimulated body fluid reveal the increase in polarization resistance with a decrease in current density (icorr) from 3.9 to 3.5 μA due to the increase of Ag concentration. The estimated hemolysis rate for 1 and 3 wt% Ag substituted HA/f-MWCNT was less than 10%. Therefore, it can be concluded that 3 wt% Ag substituted HA/f-MWCNT coating on passivated 316L SS is nonhemolytic and most suited as a novel alternative to dental and orthopaedic implants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.