Abstract

Polyetherketoneketone (PEKK) is considered to be a potential substitute material for metal bone implants because of its advantageous biocompatibility, chemical stability, and mechanical properties, but clinical application has been severely restricted due to PEKK's lack of antibacterial ability and biological activity. In this study, LL-37, a natural human antimicrobial peptide, was successfully modified on the PEKK surface with polydopamine as the intermediate layer and released continuously for more than 6 days. The results of the MTT assay, colony counts, and Live/Dead staining demonstrated that compared to unmodified PEKK, the LL-37-modified PEKK significantly inhibited the adhesion, vitality, and bacterial biofilm growth of Staphylococcus aureus and Escherichia coli in a concentration-dependent way. Furthermore, the LL-37-modified PEKK enhanced biocompatibility (cell adhesion and viability) and promoted osteogenic differentiation of human umbilical cord Wharton's jelly-derived mesenchymal stem cells. Our data suggested that LL-37-modified PEKK might be a promising material for use in orthopedic implants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.