Abstract

In polychemotherapy protocols, that is for treatment of neuroblastoma and Ewing sarcoma, Vinca alkaloids and cell cycle-arresting drugs are usually administered on the same day. Here we studied whether this combination enables the optimal antitumour effects of Vinca alkaloids to be manifested. Vinca alkaloids were tested in a preclinical mouse model in vivo and in vitro in combination with cell cycle-arresting drugs. Signalling pathways were characterized using RNA interference. In vitro, knockdown of cyclins significantly inhibited vincristine-induced cell death indicating, in accordance with previous findings, Vinca alkaloids require active cell cycling and M-phase transition for induction of cell death. In contrast, anthracyclines, irradiation and dexamethasone arrested the cell cycle and acted like cytostatic drugs. The combination of Vinca alkaloids with cytostatic therapeutics resulted in diminished cell death in 31 of 36 (86%) tumour cell lines. In a preclinical tumour model, anthracyclines significantly inhibited the antitumour effect of Vinca alkaloids in vivo. Antitumour effects of Vinca alkaloids in the presence of cytostatic drugs were restored by caffeine, which maintained active cell cycling, or by knockdown of p53, which prevented drug-induced cell cycle arrest. Therapeutically most important, optimal antitumour effects were obtained in vivo upon separating the application of Vinca alkaloids from cytostatic therapeutics. Clinical trials are required to prove whether Vinca alkaloids act more efficiently in cancer patients if they are applied uncoupled from cytostatic therapies. On a conceptual level, our data suggest the implementation of polychemotherapy protocols based on molecular mechanisms of drug-drug interactions. This article is commented on by Solary, pp 1555-1557 of this issue. To view this commentary visit http://dx.doi.org/10.1111/bph.12101.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.