Abstract
Programmed cell death protein 1 (PD-1) and ligand programmed death ligand 1 (PD-L1) are important immune-suppressive regulators in the tumor microenvironment. A vaccine-induced immune effect on tumor cells is blunted by the immunosuppressive tumor microenvironment. Therefore, we hypothesized that a dendritic cell (DC) vaccine combined with anti-PD-1 (αPD-1) antibodies could elicit a synergistic anti-tumor immunity in bladder cancer. We produced a model of subcutaneous transplantation in C3H/HeJ mice by transplanting murine MBT-2 bladder cancer cells. DCs were isolated from normal C3H/HeJ mice, followed by stimulation against MBT-2 lysate before injection. Two weeks later of MBT-2 inoculation, αPD-1 and stimulated DCs were injected two times at one-week interval intraperitoneally and intravenously, respectively. Tumor-infiltrating immune cells and splenocytes were analyzed using flow cytometry. T-cell-mediated anti-tumor responses were measured by interferon (IFN)-γ ELISPOT and lactate dehydrogenase assays. The mice treated with DC+αPD-1 showed a significant decrease in tumor volume compared to the DC-treated mice and IgG-treated group. Survival of the DC+αPD-1-treated group was improved compared with that of the IgG-treated mice. IFN-γ secretion from splenocytes against tumor cells was significantly increased in the DC+αPD-1 group compared with that of αPD-1-treated mice. The frequency of CD8+ and CD4+ T-cells in spleens was statistically increased in the DC+αPD-1-treated mice compared to those receiving monotherapy (DC- or αPD-1-treated group). Our results support the hypothesis that the combination therapy of a DC vaccine and αPD-1 antibodies could enhance the anti-tumor immune response against bladder cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.