Abstract

Polyetheretherketone (PEEK) has been widely applied for orthopedic and oral implants due to its excellent mechanical properties, biocompatibility, and radiolucency. However, its bioinert and the lack of anti-microbial activity limit its application. We modified the PEEK surface with Ta/Cu co-implantation using plasma immersion ion-implantation technology. After implantation of Ta/Cu ions, the morphology and roughness of the PEEK surface were not significantly changed at micron level. We estimated the cytocompatibility, anti-microbial ability, and osteogenic differentiation of rat bone mesenchymal stem cells (BMSCs) of the modified surfaces in vitro. Compared to the untreated surfaces, the Ta ion-treated surface showed improved adhesion, proliferation, ALP activity, ECM mineralization, and osteogenic gene expression of BMSCs. Further, the Cu ion-treated surface showed reduced initial adhesion and proliferation of Escherichia coli and Staphylococcus aureus in vitro and proliferation of Staphylococcus aureus in the mouse subcutaneous implant-associated infection model. According to a rat bone repair model, all Ta ion-implanted groups demonstrated improved new bone formation. In summary, Ta/Cu ion co-impanation improved anti-microbial activity and promoted osseointegration of the PEEK surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call