Abstract

Graphene oxide (GO) modified urea-melamine-phenol formaldehyde resin (UMPF) was reinforced by R-glass fiber woven. GO was reduced by UMPF to reduced graphene oxide (RGO). Transmission electron microscopy (TEM), atomic force microscope (AFM), and scanning electron microscopy (SEM) were used to analyze the morphology and dispersibility of RGO in UMPF. Compared with the pure R-glass fiber woven reinforced urea-melamine-phenol formaldehyde resin (RFW-UMPF), the thermal conductivity and carbon residual value (CRV) of R-glass fiber woven reinforced GO modified urea-melamine-phenol formaldehyde resin (RFW-GO/UMPF) (0.8 wt% RGO) at 800 °C were increased by 6.3% and 20%, respectively. Anti-ablation researches revealed that with 0.8 wt% RGO loading, the linear ablation rate (LAR) and mass ablation rate (MAR) of RFW-GO/UMPF deceased by 25.6% and 12.6%, respectively. Moreover, the enhancement mechanism of RGO on anti-ablation properties and alkali corrosion resistance (ACR) performances were systematically discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.