Abstract

We study the anomalous Hall Effect (AHE) of single-crystalline Co$_3$Sn$_{2-x}$In$_x$S$_2$ over a large range of indium concentration x from 0 to 1. Their magnetization reduces progressively with increasing x while their ground state evolves from a ferromagnetic Weyl semimetal into a nonmagnetic insulator. Remarkably, after systematically scaling the AHE, we find that their intrinsic anomalous Hall conductivity (AHC) features an unexpected maximum at around x = 0.15. The change of the intrinsic AHC corresponds with the doping evolution of Berry curvature and the maximum arises from the magnetic topological nodal-ring gap. Our experimental results show a larger AHC in a fundamental nodal-ring gap than that of Weyl nodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.