Abstract
An enhanced anomalous Hall effect is observed in heterogeneous uniform Fe cluster assembled films with different film thicknesses (ta = 160-1200 nm) fabricated by a plasma-gas-condensation method. The anomalous Hall coefficient (Rs) at ta = 1200 nm reaches its maximum of 2.4 × 10(-8) Ω cm G(-1) at 300 K, which is almost four orders of magnitude larger than bulk Fe. The saturated Hall resistivity (ρ(A)xy) first increases and then decreases with the increase of temperature accompanied by a sign change from positive to negative. Analysis of the results revealed that ρ(A)xy decreases with increasing longitudinal resistivity (ρxx) on a double-logarithmic scale and obeys a new scaling relation of log(ρ(A)xy/ρxx) = a0 + b0 log ρxx.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.