Abstract
The magnetic properties of the perpendicular storage electrode (buffer/MgO/FeCoB/Cap) were studied as a function of annealing temperature by replacing Ta with W and W/Ta cap layers with variable thicknesses. W in the cap boosts up the annealing stability and increases the effective perpendicular anisotropy by 30% compared to the Ta cap. Correspondingly, an increase in the FeCoB critical thickness characterizing the transition from perpendicular to in-plane anisotropy was observed. Thicker W layer in the W(t)/Ta 1 nm cap layer makes the storage electrode highly robust against annealing up to 570 °C. The stiffening of the overall stack resulting from the W insertion due to its very high melting temperature seems to be the key mechanism behind the extremely high thermal robustness. The Gilbert damping constant of FeCoB with the W/Ta cap was found to be lower when compared with the Ta cap and stable with annealing. The evolution of the magnetic properties of bottom pinned perpendicular magnetic tunnel junctions (p-MTJ) stack with the W2/Ta1 nm cap layer shows back-end-of-line compatibility with increasing tunnel magnetoresistance up to the annealing temperature of 425 °C. The pMTJ thermal budget is limited by the synthetic antiferromagnetic hard layer which is stable up to 425 °C annealing temperature while the storage layer is stable up to 455 °C.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Applied Physics Letters
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.