Abstract

Syngas production from biomass gasification is a promising technology, which is widely used in the chemical industry. Crop straw and red mud are typical agricultural and industrial wastes, respectively, which are cheap and widespread; however, they cause serious environmental pollution due to the open burning of straw and the toxicity and alkalinity of red mud. In the present work, we converted crop straw into syngas by chemical looping gasification using red mud as a sinter-resistant oxygen carrier. The reactivity of red mud, the syngas yields, and the air pollutant emissions under different conditions were systematically investigated through a thermo-gravimetric analyzer and mass spectrometer. Compared with pure Fe2O3, red mud can promote the syngas yields from crop straw gasification owing to the presence of inert Al2O3 and SiO2. Red mud can effectively reduce the emission of air pollutants owing to the presence of alkaline components such as CaO and Na2O. As the Fe2O3/fuel mass ratio increases, the syngas yield increases and the air pollutant emissions simultaneously reduce; whereas the syngas yield and the air pollutant emissions decrease with increasing heating rate. After calcination at high temperature, the structure of red mud remains stable with slight agglomeration, and can be easily regenerated. Therefore, the promising results provide a breakthrough for efficient utilization and disposal of both crop straw and red mud.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.