Abstract

The aim of this research is to investigate the effects of biochar (BC) on treatment performance (especially hydrolysis-acidification process) and microbial community shifts during anaerobic degradation of typical phenolic compounds in coal gasification wastewater. Compared to the control group, the removal of phenol, p-cresol and 3, 5-xylenol was gradually enhanced when increasing the BC addition within the test dosage (1–5 g/L). The biodegradation of phenol and p-cresol was significantly enhanced by BC addition while limited improvement for 3, 5-xylenol. The addition of BC significantly accelerated the hydrolysis-acidification process with the hydrolytic removal of phenol improved by 69.14%, the microbial activity was enhanced by 57.01%, and the key hydrolase bamA gene was enriched by 117.27%, respectively. Compared to 1–2 g/L dose, more protein-like and humic acid-like substances were secreted with 5 g/L BC, which probably contributed to higher extracellular electron transfer efficiency. In addition, phenol degrading bacteria (Syntrophorhabdus, Dysgonomonas, Holophaga, etc.) and electroactive microorganisms (Geobacter, Syntrophorhabdus, Methanospirillum, etc.) were enriched by BC addition. The functional genes related to carboxylation, benzoylation and ring cleavage processes of benzoyl-CoA pathway were potentially activated by BC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.