Abstract
The composite mycelium pellet (CMP) was coupled with Pseudomonas sp. Y1 (CMP-Y1) to remove phenol and ammonia nitrogen (NH4+-N). The CMP was formed by the self-assembly of fungal mycelium with sponge iron (SIO), gallic acid (GA), and oxalic acid. The results showed that CMP with abundant pore size and successful internal loading of sponge iron containing iron nanoparticles. CMP could induce GA redox cycle to form Fenton-like reaction and thus achieve efficient phenol removal (93.32%, 24 h). Meanwhile, the removal efficiencies of phenol, NH4+-N, and chemical oxygen demand (COD) using CMP-Y1 at 12 h were 93.71, 92.40, and 89.00%, respectively. The increase in the electron transfer activity of strain Y1 by the addition of CMP could facilitate the nitrogen removal processes. In addition, high-throughput sequencing results indicated the abundance of antioxidant and repair genes was increased, which might be a strategy of strain Y1 to cope with oxidative stress. This strategy provided the possibility for the practical application of the combination of advanced oxidation and biological treatment, and offered new insights into the symbiotic system of fungi and bacteria.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.