Abstract
Error control is significant to network coding, since when unchecked, errors greatly deteriorate the throughput gains of network coding and seriously undermine both reliability and security of data. Two families of codes, subspace and rank metric codes, have been used to provide error control for random linear network coding. In this paper, we enhance the error correction capability of these two families of codes by using a novel two-tier decoding scheme. While the decoding of subspace and rank metric codes serves a second-tier decoding, we propose to perform a first-tier decoding on the packet level by taking advantage of Hamming distance properties of subspace and rank metric codes. This packet-level decoding can also be implemented by intermediate nodes to reduce error propagation. To support the first-tier decoding, we also investigate Hamming distance properties of three important families of subspace and rank metric codes, Gabidulin codes, Kotter-Kschischang codes, and Mahdavifar-Vardy codes. Both the two-tier decoding scheme and the Hamming distance properties of these codes are novel to the best of our knowledge.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.