Abstract

With the advancement in deep learning, high-resolution face recognition has achieved outstanding performance that makes it widely adopted in many real-world applications. Face recognition plays a vital role in visual surveillance systems. However, the images captured by the security cameras are at low resolution causing the performance of the low-resolution face recognition relatively inferior. In view of this, we propose an enhanced AlexNet with Super-Resolution and Data Augmentation (SRDA-AlexNet) for low-resolution face recognition. Firstly, image super-resolution improves the quality of the low-resolution images to high-resolution images. Subsequently, data augmentation is applied to generate variations of the images for larger data size. An enhanced AlexNet with batch normalization and dropout regularization is then used for feature extraction. The batch normalization aims to reduce the internal covariate shift by normalizing the input distributions of the mini-batches. Apart from that, the dropout regularization improves the generalization capability and alleviates the overfitting of the model. The extracted features are then classified using k-Nearest Neighbors method for low-resolution face recognition. Empirical results demonstrate that the proposed SRDA-AlexNet outshines the methods in comparison.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.