Abstract

Nanoscale zero-valent iron (nZVI) settled slowly and incompletely in a nano-iron reactor (NIR) in wastewater treatment, and the effluent quality and processing capacity of nZVI were degenerated. Herein, three types of polyacrylamide (PAM), anionic-APAM (nZVIAPAM), cationic-CPAM (nZVICPAM), and nonionic-NPAM (nZVINPAM)) were applied to modify the nZVI (nZVIPAM), which were proved to enhance aggregation and sedimentation in the gravity settling clarifier of NIR. PAM modification lead to aggregate by forming large agglomerates. The median sizes of aggregates were 32, 194, 168 and 133 μm respectively for nZVI, nZVICPAM, nZVINPAM, and nZVIAPAM. Under quiescent conditions, bare nZVI needed 5 min to reach sedimentation equilibrium, while nZVIPAM just within 1 min nZVICPAM settled more quickly and completely than nZVINPAM and nZVIAPAM. The Fe concentration in the dynamic flow NIR effluent could keep a low level for 8 h for nZVIPAM, while bare nZVI for 6 h. Iron concentration was 3.11, 0.037, 0.93, and 1.20 mg·L−1 for nZVI, nZVICPAM, nZVINPAM, and nZVIAPAM after 8-h-reaction. Meanwhile, the reactivity of nZVIPAM was kept much longer for lead removal in the NIR. Results demonstrated PAM modifications (especially CPAM) provided a reliable solution for nZVI aggregation and sedimentation in wastewater treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.