Abstract

Removal of short-chain per- and polyfluoroalkyl substances (PFAS) represents a unique challenge in comparison to the long-chain homologs. In this study, a series of functionalized periodic mesoporous organosilica (PMO) materials with tunable molar ratio of fluoroalkyl to amine functional groups were developed and used as platform adsorbents to investigate the adsorption behavior of short-chain PFAS, with a focus on perfluorobutanoic acid (PFBA). Modification with fluoroalkyl group substantially enhanced the adsorption affinity of PFBA with the functionalized PMO materials. Adsorption free energy analysis suggested that although electrostatic interactions were more predominant in PFBA adsorption, modification of PMOs with increased fluoroalkyl group loadings increased the non-electrostatic interactions with PFBA, resulting in more favorable PFBA adsorption. The optimal functionalized PMO showed fast PFBA adsorption kinetics, excellent PFBA removal efficiency in various water chemistry conditions, and can be regenerated and reused for numerous cycles with methanol/water mixture containing 500-mM NH3·H2O as regenerant. Furthermore, the optimal functionalized PMO showed robust performance for the removal of PFAS mixtures under complex natural water matrix. Results of this study suggested the important role of non-electrostatic interactions in enhancing the removal of short-chain PFAS and can provide mechanistic insights into guiding the design of improved adsorbents for PFAS removal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.