Abstract

To improve the mass transfer efficiency of poly(m-phenylenediamine) for the effective removal of hexavalent chromium (Cr (VI)) from aqueous solution, a facile and one-step method to prepare two-dimensional poly(m-phenylenediamine) functionalized reduction graphene oxide (rGO-PmPD) by dilution polymerization is developed. The structure and morphology of rGO-PmPD as well as rGO and PmPD were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), Brunauer-Emmett-Teller (BET), Fourier-transformed infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), Raman, and X-ray diffraction (XRD). The preparation mechanism, adsorption performance, and mechanism of rGO-PmPD were then investigated in detail. The obtained rGO-PmPD exhibited thin 2D nanosheet morphology with much improved specific surface area and pore volume (18 and 25 times higher than that of PmPD, respectively). The Cr (VI) adsorption of rGO-PmPD was fitted well with the pseudo-second-order kinetic model and Langmuir isotherm model, and the maximum adsorption capacity of rGO-PmPD reached 588.26mgg-1, higher than that of PmPD (400mgg-1) and rGO (156.25mgg-1). Moreover, the regeneration efficiency of the rGO-PmPD nanosheet is also promising that the adsorption performance after five times of adsorption-desorption cycles still maintains more than 530mgg-1. The removal mechanism involved reduction coupled with adsorption and electrostatic interaction between rGO-PmPD and Cr (VI), and ~ 65% of Cr (VI) removal was attributed to reduction and ~ 35% was ascribed to adsorption and electrostatic interaction. This study thus provides a simple and effective route to achieve high accessible surface area of adsorbent materials with enhanced mass transfer efficiency and thereafter improved adsorption performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call