Abstract

ABSTRACTPersimmon fallen leaves were employed to prepare a renewable and low‐cost biosorbent named as NPFL. Effects of initial pH, contact time, initial Pb(II) concentration, coexisting metal ions, and ionic strength on adsorption of Pb(II) from aqueous solution by NPFL were studied in detail. Enhanced removal capacity of NPFL toward Pb(II) was observed, and the maximum adsorption capacity was evaluated as 256 mg g−1 by Langmuir modeling calculation. The fast adsorption process and the well‐fitted kinetics data with pseudo‐second‐order model indicated that chemisorption is the main rate‐limiting step for the adsorption process. NPFL had superior adsorption selectivity for Pb(II) from aqueous solution with coexisting metal ions. Characterization of NPFL and adsorption mechanism (electrostatic attraction, ion exchange, and chelation) were performed using XRD, SEM‐EDS, FT‐IR, XPS, and TGA. The results suggested that NPFL could be utilized as a potential candidate for the preconcentration of Pb(II) recovery and its removal in practice. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 43656.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call