Abstract
We propose an efficient surrogate modeling technique for uncertainty quantification. The method is based on a well-known dimension-adaptive collocation scheme. We improve the scheme by enhancing sparse polynomial surrogates with conformal maps and adjoint error correction. The methodology is applied to Maxwell's source problem with random input data. This setting comprises many applications of current interest from computational nanoplasmonics, such as grating couplers or optical waveguides. Using a non-trivial benchmark model we show the benefits and drawbacks of using enhanced surrogate models through various numerical studies. The proposed strategy allows us to conduct a thorough uncertainty analysis, taking into account a moderately large number of random parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Uncertainty Quantification
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.