Abstract

Vehicular communication has become a reality guided by various applications. Among those, high video quality delivery with low latency constraints required by real-time applications constitutes a very challenging task. By dint of its never-before-achieved compression level, the new High-Efficiency Video Coding (HEVC) is very promising for real-time video streaming through Vehicular Ad-hoc Networks (VANET). However, these networks have variable channel quality and limited bandwidth. Therefore, ensuring satisfactory video quality on such networks is a major challenge. In this work, a low complexity cross-layer mechanism is proposed to improve end-to-end performances of HEVC video streaming in VANET under low delay constraints. The idea is to assign to each packet of the transmitted video the most appropriate Access Category (AC) queue on the Medium Access Control (MAC) layer, considering the temporal prediction structure of the video encoding process, the importance of the frame and the state of the network traffic load. Simulation results demonstrate that for different targeted low-delay video communication scenarios, the proposed mechanism offers significant improvements regarding video quality at the reception and end-to-end delay compared to the Enhanced Distributed Channel Access (EDCA) adopted in the 802.11p. Both Quality of Service (QoS) and Quality of Experience (QoE) evaluations have been also carried out to validate the proposed approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.