Abstract

Diabetes mellitus is a strong risk factor for the development of heart failure, and left ventricular (LV) hypertrophy has been detected in a significant proportion of diabetic patients. Because several studies have suggested that the Na(+)/H(+) exchanger (NHE1) plays a part in the molecular mechanisms involved in cardiac hypertrophy, we investigated its activity and its role in LV myocytes from the Goto-Kakizaki (GK) rat model of type 2 diabetes. Fluorometric measurements were used to assess sarcolemmal NHE1 activity in isolated myocytes. NHE1 levels and the possible molecular pathways driving and/or related to NHE1 activity were investigated in relation to the diabetic LV phenotype. Enhanced NHE1 activity was associated with LV myocyte hypertrophy. This occurred in the absence of any change in NHE1 protein levels; however, activation of several molecular pathways related to NHE1 activity was demonstrated. Thus, phosphorylation of the extracellular signal-regulated protein kinase (Erk), of the protein kinase Akt (also known as protein kinase B) and of the Ca(2+)/calmodulin-dependent kinase II was increased in GK LV myocytes. Intracellular Ca(2+) levels were also increased. Chronic treatment (10-12 weeks) with the NHE1 inhibitor cariporide normalised NHE1 activity, decreased [Formula: see text] levels and reduced LV myocyte hypertrophy. Moreover, among the various activated pathways, cariporide treatment markedly reduced Akt activity only. These findings indicate that activation of the Akt pathway represents a likely mechanism mediating the hypertrophic effect of increased NHE1 activity in the GK model of type 2 diabetes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.