Abstract

As feed additives, oxytetracycline (OTC) and copper ion (Cu(II)) are often detected in livestock and poultry farming wastewater. To address this issue, firstly, the synthesis conditions of Fe/Mn nanoparticles (Fe/Mn NPs) were initially optimized using a response surface methodology (RSM) to yield highly active Fe/Mn NPs, where the application of RSM significantly increased the Fe/Mn NPs’ efficiency in removing co-contamination OTC and Cu(II),respectively, from 45.8 to 86.2% and 14.9–67.2%. Secondly, scanning electron microscope and Nitrogen adsorption-desorption isotherms results showed that Fe/Mn NPs were composed of elliptic particles between 20 and 40 nm, a specific surface area of 59.5 m2 g−1, and a mean pore diameter of 5.27 nm. Fourier infrared spectrometer and X-ray photoelectron spectroscopy analysis revealed that amino, carboxyl and hydroxyl functional groups existed on the surface. Zeta potential indicated that Fe/Mn NPs maintained a high negative charge density between pH 1 and 11. These surface properties possessed by the green synthesized Fe/Mn NPs resulted in high adsorption efficiency for co-contamination OTC and Cu(II). Based on this, a removal mechanism based on a combination of complex-bridging effect, pore-filling, hydrogen bonding, surface complexation, ion exchange and electrostatic attraction was proposed. Finally, the assessment of Fe/Mn NPs used in swine wastewater demonstrated that both 99.9% OTC and 55.6% Cu(II) were removed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.