Abstract
In this paper, the Enhanced Active Constrained Layer (EACL) treatment is investigated for broadband damping augmentations on beam structures. The EACL concept was originally proposed to improve the damping performance of the Active Constrained Layer (ACL) by introducing edge elements at the treatment boundaries. It has been recognized that the edge elements can increase ACL performance by enhancing the direct active authority of the piezoelectric constraining layer. It has also been demonstrated that the edge element stiffness and the host structure strain field have significant influence on the overall closed-loop system damping and its various components: the active damping, the closed-loop passive damping, and the open-loop passive (fail-safe property - without any active action) damping. Through utilizing this finding, the present study explores how the EACL performance can be synthesized for multiple mode broadband applications using symmetric configurations. Although the edge elements will tend to reduce the maximum possible open-loop damping of one (or a few) vibration mode, open-loop damping of the other higher order modes could actually be increased. Moreover, the modal damping reduction in the open-loop system can generally be compensated by the significant increase of the closed-loop damping. In other words, the closed-loop EACL system damping over a wide frequency range can be significant, which makes it attractive for broadband vibration and noise suppression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.