Abstract

We propose a physical model for enhanced activation of (implanted) dopant atoms in crystalline Si when the Si vacancy contains atomic hydrogen. Calculations of the potential barriers for inserting the interstitial phosphorus dopant into both hydrogenated and unhydrogenated vacancy sites of the crystalline Si dependent on the charge state of the hydrogenated vacancy, the hydrogen localization, and the transport direction of the interstitial atom to the vacancy are reported using the self-consistent field molecular-orbital linear combination of atomic orbitals technique in the neglect of diatomic differential overlap approach. The results suggest a decrease of the activation temperature for the phosphorus atoms by more than 300 \ifmmode^\circ\else\textdegree\fi{}C.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call