Abstract
Tendon injury is a major musculoskeletal disorder with a high public health impact. We propose a non-viral based strategy of gene therapy for the treatment of tendon injuries using histidylated vectors. Gene delivery of fibromodulin, a proteoglycan involved in collagen assembly was found to promote rat Achilles tendon repair in vivo and in vitro. In vivo liposome-based transfection of fibromodulin led to a better healing after surgical injury, biomechanical properties were better restored compared to untransfected control. These measures were confirmed by histological observations and scoring. To get better understandings of the mechanisms underlying fibromodulin transfection, an in vitro tendon healing model was developed. In vitro, polymer-based transfection of fibromodulin led to the best wound enclosure speed and a pronounced migration of tenocytes primary cultures was observed. These results suggest that fibromodulin non-viral gene therapy could be proposed as a new therapeutic strategy to accelerate tendon healing. From the Clinical EditorTendon injury is relatively common and healing remains unsatisfactory. In this study, the effects of liposomal-based delivery of fibromodulin gene were investigated in a rat Achilles tendon injury model. The positive results observed would provide a new therapeutic strategy in clinical setting in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nanomedicine: Nanotechnology, Biology and Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.