Abstract
In the present work, we synthesized Sm2O3 doped SnO2 in order to prepare a selective acetone sensor with fast response, quick recovery and good repeatability. Pure as well as 2 mol.%, 4 mol.%, 6 mol.% and 8 mol.% Sm2O3 doped SnO2 nanostructured samples were synthesized by using a co-precipitation method. The characterization of the samples was done by thermogravimetric and differential thermo-gravimetric analysis (TG-DTA), X-ray diffraction (XRD), field emission gun-scanning electron microscopy (FEG-SEM), energy dispersive analysis by X-rays (EDAX), high resolution scanning electron microscopy (HR-TEM), selected area X-ray diffraction (SAED), Brunauer-Emmet-Teller (BET) and ultraviolet-visible-near infrared (UV-Vis-NIR) spectroscopy techniques. The gas response studies of liquid petroleum gas, ammonia, ethanol and acetone vapor were carried out. The results showed that Sm doping systematically lowered operating temperature and enhanced the gas response and selectivity for acetone. The response and recovery time for 6 mol.% Sm2O3 doped SnO2 thick film at the operating temperature of 250 °C were 15 and 24 s, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.