Abstract

A novel CeO2/Co3O4 catalyst with a high catalytic activity has been designed and prepared by pyrolysis of metal-organic frameworks, and its catalytic performance was evaluated by the acetone catalytic oxidation reaction. The Co3O4-M catalyst with T90 at 194 °C was prepared by pyrolysis of the MOF-71 precursor, which was 56 °C lower than that of commercial Co3O4 (250 °C). By the addition of cerium to the MOF-71 precursor, an enhanced CeO2/Co3O4 catalyst with T90 at 180 °C was prepared. Importantly, the CeO2/Co3O4 catalyst exhibited superior stability for acetone oxidation. After 10 cycle tests, the conversion could also be maintained at 97% for at least 100 h with slight activity loss. Characterization studies were used to investigate the influence of cerium doping on the property of the catalyst. The results showed that addition of cerium could facilitate the expansion of the surface area and enhance the porous structure and reducibility at low temperature. Furthermore, the surface ratio of Co3+/Co2+ and mobile oxygen obviously improved with the addition of cerium. Therefore, the metal oxides prepared by this method have potential for the elimination of acetone.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.