Abstract

This paper presents an Interacting Multiple Model (IMM) estimator based approach to navigation using the Global Positioning System (GPS). The soft-switching IMM estimator obtains its estimate as a weighted sum of the individual estimates from a number of parallel filters matched to different motion modes of the platform e.g., nearly constant velocity and maneuvering. The goal is to obtain the maximum navigation accuracy from an inexpensive and light GPS-based system, without the need for an inertial navigation unit, which would add both cost and weight. In the case of navigation with maneuvering, for example, with accelerations and decelerations, the IMM estimators can substantially improve navigation accuracy during maneuvers as well as during constant velocity motion over a conventional (extended) Kalman Filter (KF), which is, by necessity, a compromise filter. This paper relies on a detailed modeling of GPS and presents the design of a navigation solution using the IMM estimator. Two different IMM estimator designs are presented and a simulated navigation scenario is used for comparison with two baseline KF estimators. Monte Carlo simulations are used to show that the best IMM estimator significantly outperforms the KF with about 40-50% improvement in RMS position, speed and course errors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.