Abstract

Pine wood nematodes (PWNs; Bursaphelenchus xylophilus) infect pine trees and cause serious pine wilt disease. Eastern white pine (Pinus strobus) has resistance to PWN. However, the detailed defense mechanisms of P. strobus against PWN are not well known. When P. strobus plants were infected with PWNs, the accumulation of stilbenoids, dihydropinosylvin monomethyl ether (DPME) and pinosylvin monomethyl ether (PME) was increased remarkably. Both DPME and PME had high nematicidal activity. The nematicidal activity of the two compounds was resulted in a developmental stage-dependent manner. Pinosylvin monomethyl ether was more toxic to adult PWNs than juveniles, whereas DPME was found more toxic to juvenile PWNs than the adults. The genes involved in PME and DPME biosynthesis such as phenylalanine ammonia-lyase (PAL), 4-coumarate-CoA ligase (4CL), pinosylvin synthase (STS) and pinosylvin O-methyltransferase (PMT) were isolated using de novo sequencing of the transcriptome in P. strobus. In addition, transcription factors (TFs; bHLH, MYB and WRKY) related to stilbene biosynthesis were isolated. qPCR analyses of the selected genes (PAL, 4CL, STS and PMT) including TFs (bHLH, MYB and WRKY) revealed that the expression level of the selected genes highly enhanced after PWN infection. Our results suggest that pinosylvin-type stilbenoid biosynthesis is highly responsive to PWN infection and plays an important role in PWN resistance of P. strobus trees.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.