Abstract

The absorption of type-II nanostructures is often weaker than type-I counterpart due to spatially indirect optical transitions. This phenomenon limits the application of type-II nanostructures in photon detections. In this paper, we show that with proper arrangements of conduction barriers, the formation of quasi-bound states can significantly boost up the absorption of type-II coupled quantum rings. Meanwhile, the rapid tunneling of electrons in these leaky states should make the corresponding external quantum efficiency comparable to that of single (uncoupled) rings. These features may improve the performance of photon detectors based on type-II semiconductor nanostructures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.