Abstract

By using a tunable filter with tunability of both bandwidth and wavelength and a very sharp filter roll-off, considerable improvement of all optical Wavelength Conversion, based on Cross Gain and Phase Modulation effects in a Semiconductor Optical Amplifier and spectral slicing, is shown. At 40 Gb/s slicing of blue spectral components is shown to result in a small penalty of 0.7 dB, with a minimal eye broadening, and at 80 Gb/s the low demonstrated 0.5 dB penalty is a dramatic improvement over previously reported wavelength converters using the same principal. Additionally, we give for the first time quantitative results for the case of red spectral slicing at 40 Gb/s which we found to have only 0.5 dB penalty and a narrower time response, as anticipated by previously published theoretical papers. Numerical simulations for the dependence of the eye opening on the filter characteristics highlight the importance of the combination of a sharp filter roll-off and a broad passband.

Highlights

  • All-optical Wavelength Converters (WCs) are likely to become essential building blocks for future dynamic high-capacity optical networks [1]

  • At 40 Gb/s slicing of blue spectral components is shown to result in a small penalty of 0.7 dB, with a minimal eye broadening, and at 80Gb/s the low demonstrated 0.5 dB penalty is a dramatic improvement over previously reported wavelength converters using the same principal

  • We give for the first time quantitative results for the case of red spectral slicing at 40Gb/s which we found to have only 0.5dB penalty and a narrower time response, as anticipated by previously published theoretical papers

Read more

Summary

Introduction

All-optical Wavelength Converters (WCs) are likely to become essential building blocks for future dynamic high-capacity optical networks [1]. In this paper we implement the concept of filtering the blue or red components of an inverted wavelength converted signal, using an optical filter with tunable and broad bandwidth (up to 6nm) as well as very sharp roll off (>60 dB/nm) and a >50dB rejection of remaining spectral components In this way the unwanted CW component is strongly suppressed, as well as the undesired portion of the inverted spectrum, while the rest of the filtered spectrum suffers only a minimal insertion loss (4.5dB). The importance of the filter characteristics is further analyzed using numerical simulations and gives guidelines for the minimum requirements for such a filter

SOA theory and numerical simulations
Experimental set-up and result discussion
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.